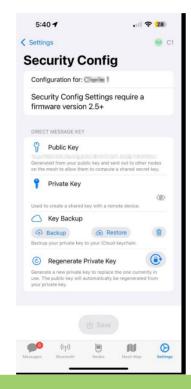

Meshtastic Network Deployment Considerations

Why Meshtastic?

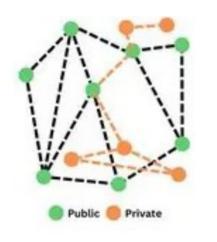
- Well supported and documented LoRa meshing technology
- Automated self healing, highly available network
- Widely available affordable hardware selection and peripherals
- AES256 encrypted communication
- Enterprise grade security and remote management features
- Easy to use app for iPhone, Android, Computers

Mesh Networks of the Past

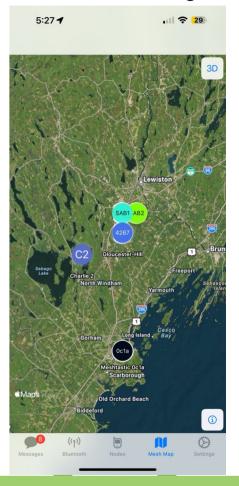
Directional Horns
C & KU Bands
5-20 Watts Output
Avg 50-100 Miles Apart



Secure Messaging



What is it for?


PKI Encryption

Off-Grid Network

Location Sharing

Mobile Hardware Selection

- Low power consumption
- On-board solar charger
- Modular inputs
- Small footprint
- Best for remote node

- Med power consumption
- Easy setup
- Small footprint
- Best for personal node

- High power consumption
- Feature rich (Wi-Fi, GPS)
- Many inputs (soldering)
- Med footprint, fragile
- Best for powered base station/car

Base Station Hardware Selection

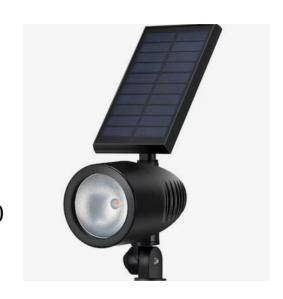
Station G2

Signal Amplifiers*

- High transmit power (4.8 watts)*
- Low-noise receiver
- ESP32-S3 processor
- Flexible power input (USB C PD, DC 9V-19V)
- GPS and sensor ports (Grove I2C, Qwiic, Stemma)

High Gain Antennas

*Unlicensed operators may only transmit up to 1 watt

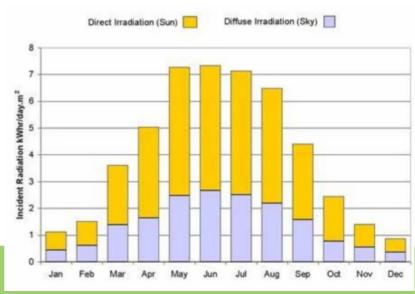

Power

Batteries:

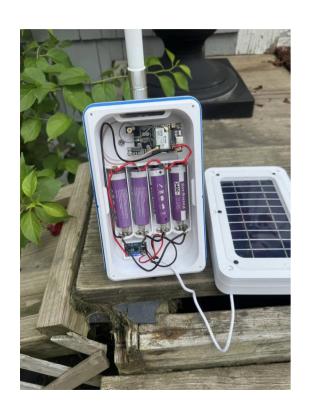
RAK node average power consumption = 4-6mA hour

x1 18650 battery = 2500mA hour

Each 18650 battery can power a RAK node up to an average of 20 days dependent on usage.



USB Power:


Version	Maximum Power	Voltage	Maximum Current
USB 2.0	2.5 W	5 V	500 mA
USB 3.1	4.5 W	5 V	900 mA
USB BC 1.2	7.5 W	5 V	1.5 A
USB Type-C 1.2	15 W	5 V	3 A
USB PD	100 W	5/9/15/20 V	5 A

Solar:

Using a small .5 watt solar panel (6"x3"), it would take 12 hours to charge an 18650 in full sun. This time will extend based on the season.

Remote Node Deployment Examples

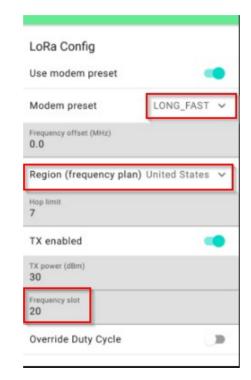
Device Roles

Strategic

	Role	Description	Routes Messages	Telemetry	Power Behavior	Placement?	Ideal Use Cases
	Client	Default general-purpose role. Sends, receives, and intelligently routes messages.	Yes (smart delay)	Sends normally	Moderate power; sleeps when possible	X No	Most handheld or mobile devices. Great for general users.
lacksquare	Client_Mute	Like Client, but does not route others' messages. Minimizes congestion in dense networks.	X No	Sends normally	Lowest power; no routing activity	X No	Use on personal devices near a main CLIENT or ROUTER node.
CAUTION	Router	Always routes others' packets. Prioritized in routing decisions. Sends less telemetry to save power.	✓ Yes (always)	▲ Reduced frequency	Sleeps between relays; no user messages	✓ Yes – crucial	Line-of-sight fixed stations: mountaintops, towers, strategic high points.
0	Repeater	Like Router, but never sends telemetry or user messages. Pure rebroadcast node.	Yes (always)	X None	Always on; only responds to others	Yes – very critical	Bridging gaps across valleys, ridgelines, or isolated terrain.
	Sensor	Gathers and transmits sensor data (e.g. weather, air quality). Prioritizes its own telemetry.	Yes	✓ High-priority telemetry	Sleeps between environmental reporting intervals	X Not required	Remote environmental monitors, weather stations, field sensors.
	Tracker	Broadcasts GPS coordinates regularly. Prioritizes position	Yes (when a\ \forall)	✓ High-priority GPS	Sleeps between location broadcasts	X Not required	GPS tracking of people, vehicles, pets, or assets.

packets over mesh congestion.


LoRa Settings


Preset

LONG FAST

Frequency (MHz)

~915

LONG_SLOW	~915	SF12, 20.8kHz	Long	Maximum range
VERY_LONG	~915	SF12, 31.25kHz	Very Long	Remote sensors
Slot Index			Frequency (MHz)
0			903.08	
1			904.28	
2			905.48	
3			906.68	
4			907.88	

Modem Settings

SF7, 250kHz

Range

Medium

Use Case

General use

Meshtastic as a ham

Most commonly deployed in normal "unlicensed mode" there is Licensed mode for hams. Licensed mode changes the following

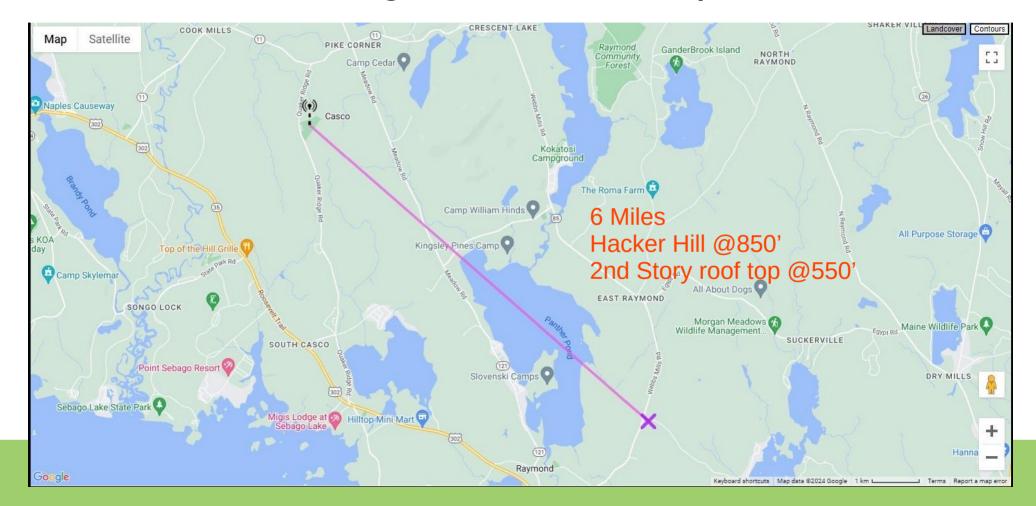
- Removes encryption keys
- Allows additional power on limited boards
- Can be used on 433 MHZ

Feeds and Speeds

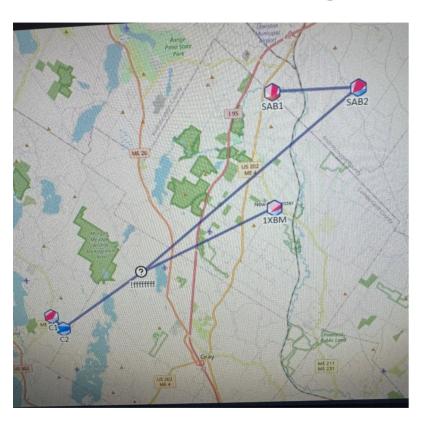
Radio Preset	Alt Preset Name	Data-Rate	SF / Symbols	Coding Rate	Bandwidth	Link Budget
Short Range / Turbo	Short Turbo	21.88 kbps	7 / 128	04/05/25	500 kHz1	140dB
Short Range / Fast	Short Fast	10.94 kbps	7 / 128	04/05/25	250 kHz	143dB
Medium Range / Fast	Medium Fast	3.52 kbps	9 / 512	04/05/25	250 kHz	148dB
Long Range / Fast	Long Fast	1.07 kbps	11 / 2048	04/05/25	250 kHz	153dB
Long Range / Moderate	Long Moderate	0.34 kbps	11 / 2048	04/08/25	125 kHz	156dB
Long Range / Slow	Long Slow	0.18 kbps	12 / 4096	04/08/25	125 kHz	158.5dB

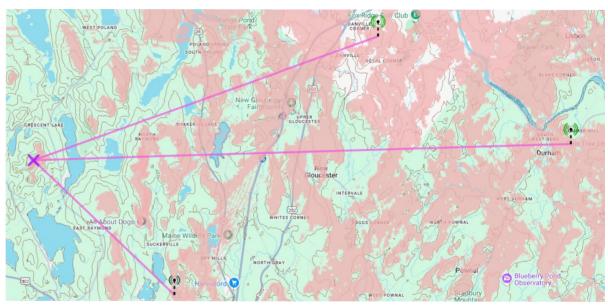
Remote Node Security Best Practices

- Physical access to device allows access to encryption key(s)
- Encryption keys should only be shared in person
- Rebroadcast Mode "all" allows forwarding of packets without keys
- Use PKI admin for remote management over LoRa
- Use "Managed" mode to disable local device management
- Disable LED lights
- Properly camouflage node enclosure and antenna


Real World Range

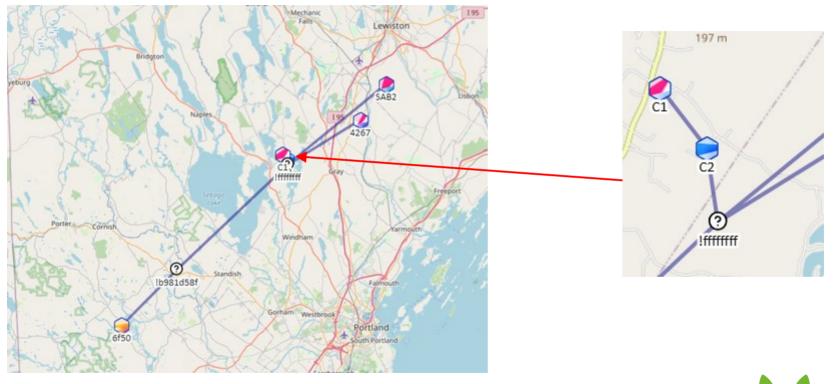
- Meshtastic is a line of sight radio technology (UHF)
- The higher the node, the better the range. <u>Height is Might!</u>
- 1/4 mile when line of sight is obstructed (trees, buildings, etc)
- 15+ miles when line of sight is strong
- Using an external antenna when in car or building is important
- Flying a node on a drone or balloon extends range significantly

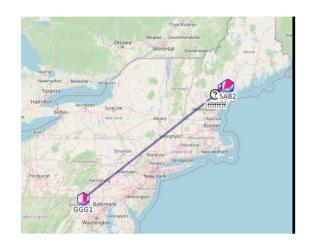


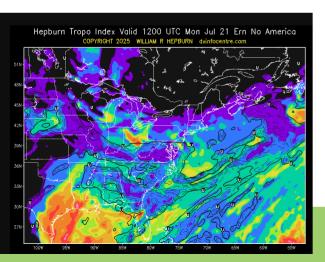


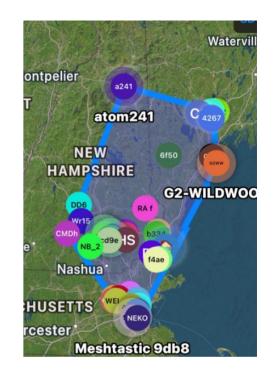
Range Test: Roof Top

Range Test: Router at Altitude





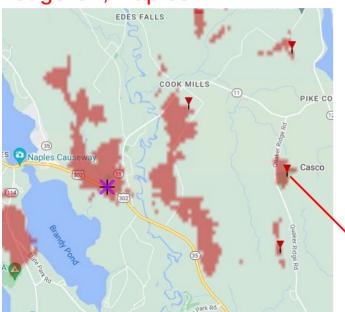

Range Test: Drone Lift



Tropospheric Ducting

Where did all these nodes come from?

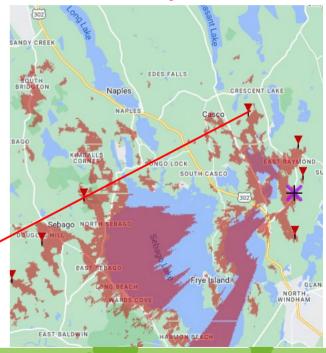
- During the day, the sun heats the earth's surface, causing warm air to rise and mix with cooler air aloft. This breaks up any stable layers and limits long-distance radio propagation.
- At night, the ground cools quickly, and cooler air gets trapped near the surface under a layer of warmer air aloft.
- This "inversion layer" refracts radio waves back toward the ground, forming a duct that can carry signals hundreds of miles.
 But also sometimes...


RF Propagation Mapping Tools

- Panorama = What can I see from a point/height (line of sight)
 https://heywhatsthat.com/
- WISP Tools = Generate Meshtastic coverage maps https://wisp.heywhatsthat.com/
- RF Line of Sight = Generate detailed line of sight report https://www.scadacore.com/tools/rf-path/rf-line-of-sight/
- Radio Mobile Online https://Ve2dbe.com

Node Site Selection Step 1: Panorama

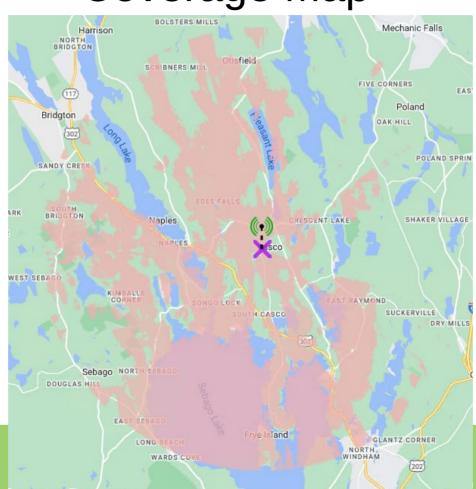
Locate high point between locations you want to connect


Dodge Oil, Naples

Generate panorama for each location and find overlapping areas.

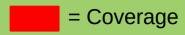
- 1. New panorama button
- 2. Enter address
- 3. Enter antenna elevation
- 4. Name and submit

Brown Rd, Raymond



Node Site Selection Step 2: Coverage Map

WISP Tools:


- 1. Enter address of node site
- 2. Enter elevation
- 3. Set freq to 900MHz
- 4. Click "Create Tower"
- 5. Tower tab, name, change range to 15
- 6. Remove examples, "Refresh"
- 7. View shed tab, check box for your tower

Now you can see theoretical coverage area of proposed node site.

Note: Node height and placement within coverage area is critical.

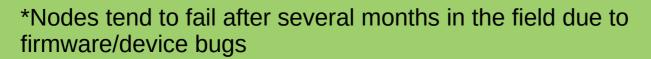
Node Site Selection Step 3: Verify Line Of Sight

Dodge Oil -> Hacker Hill

RF Line of Sight Tool:

- 1. Drag and drop between points
- 2. Enter elevation
- 3. Radio path is generated
- 4. Use a topo map to locate obstructions if present

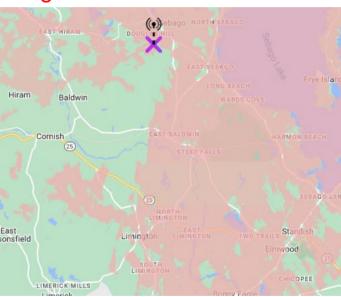
Hacker Hill -> Brown Rd



Node Site Selection Step 4: Access and Physical Security

- Nodes should be mounted as high as possible
- Permission should be obtained for placement
- Node should be placed in an area that cannot be easily accessed by the public to prevent tampering
- Node should be retrievable in case of failure*

Node Site Selection Step 5: Connect Routers (Expand Network)


WISP Tools:

- 1. Using your coverage map/Panorama locate another high point that overlaps with the next area you want to cover
- 2. Generate new coverage map for next hop node location
- 3. A directional antenna can be used to interconnect further away nodes

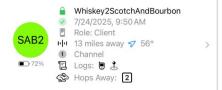
Hacker Hill Router Site

Douglas Mountain Router Site

Why is my mesh not working as expected?

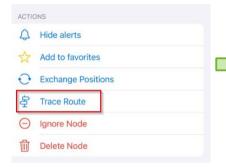
Limited Bandwidth: LoRa is optimized for range, not throughput—only small packets can be transmitted, causing delays or incomplete data propagation.

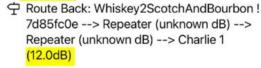
Network Latency and Congestion: Nodes may queue or drop messages during periods of high traffic or <u>poor link quality.</u>


Unreliable Node Discovery: Nodes don't maintain a centralized view of the network; route information is shared opportunistically and may be outdated or incomplete.

Device Variability: Differences in firmware versions, antenna quality, and power levels can impact node visibility and performance.

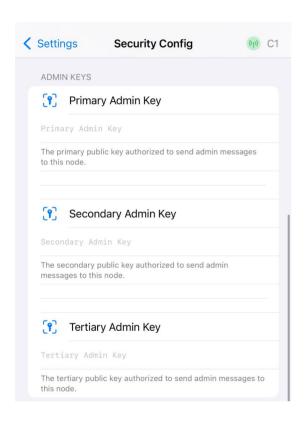
Environmental Interference: Physical obstructions, weather, and RF noise can all degrade signal quality, leading to inconsistent behavior.

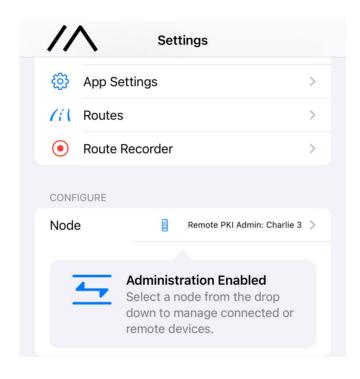

Overall, Meshtastic prioritizes resilience and range over real-time precision, which can result in unexpected or delayed behavior in dynamic environments.

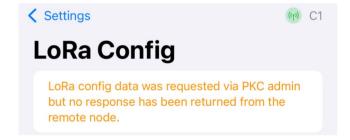


Trace Routes

 Poute: Charlie 1 --> Repeater (unknown dB)
 --> Repeater (unknown dB) -->
 Whiskey2ScotchAndBourbon !7d85fc0e
 (-3.0dB)

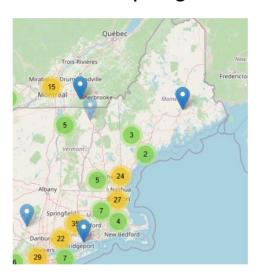




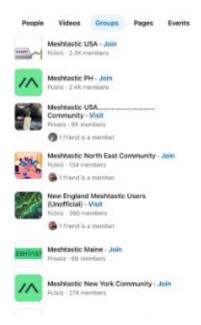

Meshtastic Network Troubleshooting

Nodes not talking at close range. Test ① Max Retransmission Reached	Verify the channel and LORA configurations match.
Nodes not talking at long range. Test Max Retransmission Reached	Verify line of sight, antenna, connectors, LORA configuration. Use second device to verify connectivity at close range.
Node not reachable via Bluetooth.	Verify node is powered on, within Bluetooth range, active on the mesh.
Node is not functioning properly or responding.	Verify all of the above, if still not working re-flash and reconfigure.

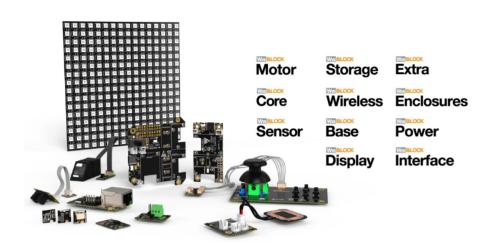
Remote Node Administration

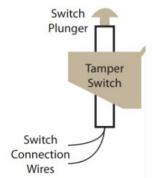


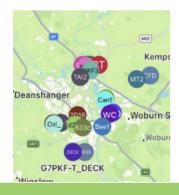
Additional Tools

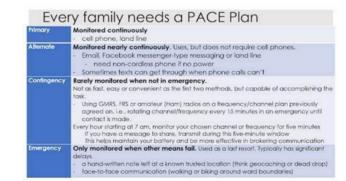

Mesh Sense

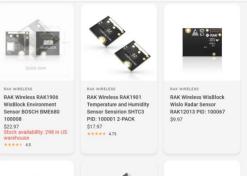
Meshmap.org


Social Media


Other Ideas







RAK WIRELESS RAK Wireless RAK1902 Barometric Pressure Sensor STMicroelectronics LPS22HB 100010 2-PACK \$17.97

RAK WIRELESS **RAK Wireless RAK12015** WisBlock Vibration Sensor ANT801S PID: 100048 \$9.97

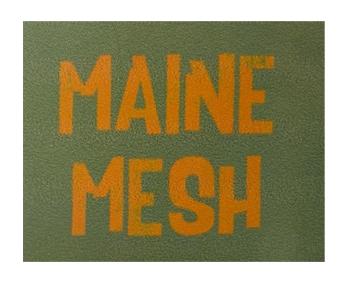
RAK WIRELESS RAKwireless RAK12006 PIR Motion Sensor Senba Sensing AM312 PID: 100041 \$9.97

Additional Resources

https://www.youtube.com/@The_Comms_Channel https://www.youtube.com/@HamRadioCrashCourse

https://meshtastic.org/

https://store.rokland.com/


https://www.facebook.com/groups/730536684339042

Meshtastic Maine Net

